Skip to main content

Usage Guide

Detect Phishing URLs

Quickly identify phishing attempts in URLs using the PhishingDetector class.

Example:

from phishing_detection_py import PhishingDetector

detector = PhishingDetector(model_type="url")
result = detector.predict("http://example-phishing-site.com")
print(result)

This code will output the detection result, such as whether the URL is a phishing attempt and the confidence score.


Detect Phishing Emails

Analyze email content for phishing indicators.

Example:

from phishing_detection_py import PhishingDetector

detector = PhishingDetector(model_type="email")
result = detector.predict("Urgent: Your account is locked. Click here to unlock it.")
print(result)

This code evaluates the email text and provides phishing detection results.


Batch Processing

You can process multiple URLs or emails at once using the BatchProcessor class.

Example:

from phishing_detection_py.batch_processor import BatchProcessor

inputs = ["http://phishing-url.com", "https://safe-url.org"]
batch_processor = BatchProcessor(model_type="url")
results = batch_processor.process(inputs)
print(results)

This approach is ideal for handling large datasets efficiently.


Advanced Usage

Customize your detection workflow or configurations.

Using Custom Configurations

from phishing_detection_py.utils import load_config

config = load_config("path/to/config.yaml")
print(config)

This allows you to load and apply custom configurations for your detection process.


Interpreting Results

The output of detection methods includes:

  • Labels: phishing or legitimate
  • Confidence Scores: A numerical value indicating the model's certainty.

Example Output:

[
{"input": "http://phishing-url.com", "label": "phishing", "confidence": 0.98},
{"input": "https://safe-url.org", "label": "legitimate", "confidence": 0.95}
]